Iron deficiency is common, especially among young women. Adding probiotics to foods could be one way to increase iron absorption. The aim of this study was to test the hypothesis that non-haem iron absorption from a fruit drink is improved by adding *Lactobacillus plantarum* 299v (Lp299v). Iron absorption was studied in healthy women of reproductive age using a single-blind cross-over design in two trials applying the double-isotope (\(^{55}\text{Fe} \) and \(^{59}\text{Fe} \)) technique. In Trial 1, iron absorption from a fruit drink containing 10\(^9\) colony-forming units (CFU) Lp299v was compared with that from a control drink without Lp299v. Trial 2 had the same design but 10\(^10\) CFU were used. The test and control drinks contained approximately 5 mg of iron as ferrous lactate and were labelled with \(^{59}\text{Fe} \) (B) and \(^{55}\text{Fe} \) (A), respectively, and consumed on 4 consecutive days in the order AABB. Retention of the isotopes was measured with whole-body counting and in blood. Mean iron absorption from the drink containing 10\(^9\) CFU Lp299v (28.6 (SD 12.5) %) was significantly higher than from the control drink (18.5 (SD 5.8) %, n 10, \(P < 0.028 \)). The fruit drink with 10\(^10\) CFU Lp299v gave a mean iron absorption of 29.1 (SD 17.0) %, whereas the control drink gave an absorption of 20.1 (SD 6.4) % (n 11, \(P < 0.080 \)). The difference in iron absorption between the 10\(^9\) CFU Lp299v and the 10\(^10\) CFU Lp299v drinks was not significant (\(P = 0.941 \)). In conclusion, intake of probiotics can increase iron absorption by approximately 50 % from a fruit drink having an already relatively high iron bioavailability.

Key words: Probiotics: *Lactobacillus plantarum* 299v; Fruit drinks: Iron status: Radio iron: Radioisotopes: Females

Iron deficiency and low iron status are common all around the globe\(^{(1)}\), and women of reproductive age are a vulnerable population because of their high iron requirements\(^{(2,3)}\). Besides inadequate iron intake, low iron bioavailability is the predominant reason for iron deficiencies in populations subsisting on plant-based diets, independent of sex\(^{(4)}\). Strategies to increase the intake of foods rich in iron, as well as dietary factors with enhancing effect on iron absorption, are therefore important.

A number of dietary factors affect the absorption of non-haem iron. Intake of ascorbic acid and meat stimulates absorption, whereas calcium, polyphenols (e.g. in tea, coffee, vegetables) and phytates (e.g. whole grain cereals) inhibit absorption\(^{(5)}\). Lactic acid-fermented foods may also improve the non-haem iron absorption. A number of single-meal studies with fermented vegetables and cereals have shown a significant increase in iron absorption in humans\(^{(6–8)}\). Lactic acid-fermented foods can increase iron absorption in humans, possibly by lowering pH, activating phytases, producing organic acids or by the viable lactic acid bacteria.

The strain *Lactobacillus plantarum* 299v (Lp299v) has been shown to survive the passage through the gastrointestinal tract irrespective of gastric acidity\(^{(9)}\). The strain colonises the intestine and can be found in mucosal samples taken from the jejunum and rectum 11 d after administration\(^{(10)}\). In clinical studies, Lp299v has been shown to have a positive effect on health. Effects include reducing gas problems and pain\(^{(11–13)}\) in people who suffer from irritable bowel syndrome. Intake of Lp299v can also counteract certain unwanted bacteria in the intestine\(^{(14)}\), and it can also have an anti-inflammatory effect by reducing the content of fibrinogen, ROS and IL-6 in the serum of subjects in a proinflammatory state\(^{(15,16)}\). An earlier study

Abbreviations: CFU, colony-forming units; Lp299v, *Lactobacillus plantarum* 299v; PA, phytic acid.

Corresponding author: M. Hoppe, email michael.hoppe@nutrition.gu.se
showed that intake of Lp299v can increase iron absorption by
over 100% from an oat base with low iron bioavailability
(contains high levels of phytic acid (PA))17. The iron absorption
was very low (1-1% of the non-haem iron), and it is not
known whether Lp299v can affect iron absorption in a meal
with a higher availability of iron, thereby justifying the
present study.

The primary aim of the study was to test the hypothesis that
non-haem iron absorption from a fruit drink is improved by
the addition of Lp299v. The secondary aim was to investigate whether
this hypothesised effect is dependent on the Lp299v concentration
by giving the subjects a dose of 10^9 or 10^{10} CFU Lp299v.

Methods

Design

The study comprised two cross-over double radio-iron isotope
single-blinded trials in young healthy Swedish women. The
reason for confining the study to women was that women are
one of the main vulnerable populations when it comes to iron
deficiency. This double radio-iron method enabled the effect of
adding or not adding Lp299v on iron absorption to be measured
separately in the same individual. The two separate trials were
performed from August to December 2007.

General protocol

In each trial, eleven subjects were served either a 200-ml fruit
drink containing Lp299v (B) or a 200-ml fruit drink without
lactobacilli (A). In Trial 1, drink B contained 10^9 colony-forming
units (CFU) Lp299v, and in Trial 2 it contained 10^{10} CFU Lp299v.
The fruit drink was served as breakfast during 4 consecutive
days in the order AABB. During the first 2 d, the drink was
served without lactobacilli, after which the fruit drink containing
lactobacilli was served on days 3 and 4. This order was chosen
to avoid the possible effect of any lactobacilli remaining in the
body if Lp299v was administered before the placebo. No food
or drink was allowed within 3 h of the intake of the fruit drink.
To determine the amount of iron absorbed, the iron in the fruit
drinks was homogeneously labelled with extrinsic 59Fe (B) and
55Fe (A). Each portion of fruit drink was labelled, through
pipetting, with the radioisotope (as FeCl$_3$) immediately before
serving. Blood sample was taken approximately 2 weeks after
fruit drink administration. See Fig. 1 for study design.

Measurement of iron absorption

The double-isotope technique has been used in human studies
for 50 years and is well validated18,19. The basis for this
methodology lies in the ‘pool concept’20,21, which is based on
the diffusion-driven isotopic exchange occurring between extrinsically added iron and native iron in a meal – that is the
common available pool of iron. In short, iron absorption is
assessed by calculating the difference between the administered
radioactivity and the radioactivity measured in the body. One of
the advantages of using two different isotopes is that each
person becomes their own control.

Fig. 1. Study design. Fruit drink A (with 55Fe, but without Lp299v) and B (with 59Fe and Lp299v) were administered on 4 consecutive days. Approximately 2 weeks later, a whole-body counting was performed in order to assess the total body iron retention from the γ-emitting 59Fe (B). Directly after, a blood sample was drawn, in which the relative absorption of the two isotopes was assessed, after which a reference dose containing 55Fe-labelled ferrous iron was administered. A reference dose was also administered the following day. Two weeks later the absorption from the reference dose was measured in the whole-body counter.

Each drink was administered on an empty stomach (i.e. no
food after 22.00 hours and no drink after 24.00 hours the
evening before) over consecutive days, after which the mean daily
iron absorption was calculated. This was to reduce the effect of
day-to-day variation in iron absorption.

Approximately 2 weeks (10–16 d) after drink administration,
a whole-body counting was performed using a very sensitive
whole-body counter22.

The iron absorption from the 59Fe-labelled fruit drink (B) was
calculated as the percentage of detected whole-body radio-
activity, corrected for physical decay and background radio-
activity. The radiation from 59Fe corresponds to the amount of
absorbed 59Fe, which in turn, according to the ‘pool concept’,
corresponds to the amount of absorbed total iron from the drink
containing Lp299v. However, absorption from 55Fe (i.e. the
drink without Lp299v) cannot be detected by whole-body counting.
Consequently, after the whole-body counting, a
blood sample was drawn in which the relative absorption of
each of the two isotopes was determined using a liquid scin-
tillator. This relative absorption was then used, together with
the blood volume calculated from each individual’s height,
weight and Hb concentration23, to also calculate the total body
55Fe absorption (i.e. fruit drink A).

After the whole-body counting and the blood test, a reference
dose (10 ml of 0.01 mol HCl containing 3 mg of 59Fe-labelled
iron (II) + 30 mg of ascorbic acid) was administered orally as
breakfast together with 100 ml of water. Another reference dose
was administered as breakfast the following morning. No food
or drink was allowed within 3 h after the intake of each of the
reference doses. The absorption from the reference dose was
measured after another 2 weeks in the whole-body counter. By
relating the absorption from the fruit drinks to this reference
dose absorption, the variation depending on differences in iron
absorption capacity was corrected.

The recorded radioactivity for each subject in the different
trials amounted to a total of 2 μCi from 55Fe and 20 μCi from 59Fe
(2×0.5 μCi from reference dose + 2×0.5 μCi from fruit drink).
A wet chemical analysis of 55Fe and 59Fe was carried out according to a modification of the analysis method described by Eakins & Brown(24). Duplicates of whole blood corresponding to 10 mg of Fe were pre-treated and finally analysed in a liquid scintillator (Tri-Carb; Packard Instruments) to determine the radiation from 55Fe and 59Fe.

Iron absorption is affected not only by the composition of the meal but also by intra-individual differences in iron absorption capacity, in which iron status is the predominant affecting factor(25–27). This entails a problem when comparing different meals administered to subjects with different iron status and different iron absorption capacity, and thus there was an informal agreement on normalising iron absorption results to the 40 % absorption from a reference dose of iron. The normalised meal absorption is the iron absorption for an individual having a reference dose absorption of 40 %, corresponding to borderline iron-deficit individuals who have not developed anaemia. The absorbed amount of iron at this standardised iron status is obtained by multiplying the drink and reference dose ratio by 40.

Composition of the fruit drink

The fruit drink with an oat base included grape, mango, passion fruit, banana and added sugar. Mango provided 6.5 %, the other fruits provided 26.5 %, oat base provided 5 % and added sugar provided 4 % of the content. The fruit drinks were supplemented with iron (2-1 mg/100 ml, in the form of ferrous lactate dehydrate; Vitablend) and ascorbic acid (50 mg/100 ml; Vitablend) and were produced in connection with Trial 1 and Trial 2, respectively. Lp299v was added as a fermented oat base, and the products were balanced so that they all contained the same amount of oat base (5/100 ml) and added sugar (5/100 ml). The appearance, taste and texture of all study products were identical.

<table>
<thead>
<tr>
<th>Composition of the study drinks (per 200-ml drink)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial 1</td>
</tr>
<tr>
<td>Fruit drink with Lp299v</td>
</tr>
<tr>
<td>Lp299v (CFU)</td>
</tr>
<tr>
<td>Iron (mg)†</td>
</tr>
<tr>
<td>PA (mg)</td>
</tr>
<tr>
<td>PA:Fe molar ratio</td>
</tr>
<tr>
<td>o-Lactate (mmol)</td>
</tr>
<tr>
<td>r-Lactate (mmol)</td>
</tr>
<tr>
<td>Acetate (mmol)</td>
</tr>
<tr>
<td>AA (mg)</td>
</tr>
<tr>
<td>AA:Fe molar ratio</td>
</tr>
<tr>
<td>Energy (kJ)</td>
</tr>
<tr>
<td>Energy (kcal)</td>
</tr>
<tr>
<td>Control fruit drink</td>
</tr>
<tr>
<td>Lp299v (CFU)</td>
</tr>
<tr>
<td>Iron (mg)†</td>
</tr>
<tr>
<td>PA (mg)</td>
</tr>
<tr>
<td>PA:Fe molar ratio</td>
</tr>
<tr>
<td>o-Lactate (mmol)</td>
</tr>
<tr>
<td>r-Lactate (mmol)</td>
</tr>
<tr>
<td>Acetate (mmol)</td>
</tr>
<tr>
<td>AA (mg)</td>
</tr>
<tr>
<td>AA:Fe molar ratio</td>
</tr>
<tr>
<td>Energy (kJ)</td>
</tr>
<tr>
<td>Energy (kcal)</td>
</tr>
<tr>
<td>Trial 2</td>
</tr>
<tr>
<td>Fruit drink with Lp299v</td>
</tr>
<tr>
<td>Lp299v (CFU)</td>
</tr>
<tr>
<td>Iron (mg)†</td>
</tr>
<tr>
<td>PA (mg)</td>
</tr>
<tr>
<td>PA:Fe molar ratio</td>
</tr>
<tr>
<td>o-Lactate (mmol)</td>
</tr>
<tr>
<td>r-Lactate (mmol)</td>
</tr>
<tr>
<td>Acetate (mmol)</td>
</tr>
<tr>
<td>AA (mg)</td>
</tr>
<tr>
<td>AA:Fe molar ratio</td>
</tr>
<tr>
<td>Energy (kJ)</td>
</tr>
<tr>
<td>Energy (kcal)</td>
</tr>
<tr>
<td>Control fruit drink</td>
</tr>
<tr>
<td>Lp299v (CFU)</td>
</tr>
<tr>
<td>Iron (mg)†</td>
</tr>
<tr>
<td>PA (mg)</td>
</tr>
<tr>
<td>PA:Fe molar ratio</td>
</tr>
<tr>
<td>o-Lactate (mmol)</td>
</tr>
<tr>
<td>r-Lactate (mmol)</td>
</tr>
<tr>
<td>Acetate (mmol)</td>
</tr>
<tr>
<td>AA (mg)</td>
</tr>
<tr>
<td>AA:Fe molar ratio</td>
</tr>
<tr>
<td>Energy (kJ)</td>
</tr>
<tr>
<td>Energy (kcal)</td>
</tr>
</tbody>
</table>

Lp299v, Lactobacillus plantarum 299v, CFU, colony-forming units; ND, not detected; PA, phytic acid; AA, ascorbic acid.
† <10 CFU/ml.

Of which 4 mg as ferrous lactate dehydrate.

Table 1. Composition of the study products (per 200-ml drink)

Ethics

The study was conducted according to the Ethical Principles for Medical Research Involving Human Subjects, adopted by the 18th World Medical Association General Assembly, in Helsinki, Finland, in June 1964. The study protocol was approved by the Ethics Review Board in Gothenburg (Registration Diary number: 181-07), as well as by the Radiation Protection Committee and Radiation Ethics at the Sahlgrenska University Hospital (Diary number: 07-13). All subjects were given detailed information, both in written form and orally, about the purpose and procedures of the study. Consent to participate was signed by the subject before the study started, and the subject was free to withdraw from the study at any time without giving any explanation.

Subjects

The study population consisted of twenty-two healthy Swedish women of reproductive age recruited from students at the University of Gothenburg.

Inclusion/exclusion criteria

The subjects had to be healthy women of reproductive age not on medication (with the exception of oral contraceptives) or with any gastrointestinal, malabsorptive or metabolic diseases. They should not be pregnant or lactating, and they should not have donated blood within 2 months before the study. They should not have taken any dietary supplements (including iron) during the study, nor within the 2 weeks before the study. Exclusion criteria also included infection/inflammation, as an activated acute-phase reaction has a marked effect on iron homoeostasis and iron absorption.
Laboratory analysis

Blood samples were collected by venepuncture directly after the whole-body counting, which took place about 14 d after the intake of the radio-iron-labelled fruit drinks. Serum iron concentration, total iron-binding capacity, transferrin saturation, S-Ferritin, soluble transferrin receptor and HB and C-reactive protein (CRP) were analysed at an accredited reference laboratory (Clinical Chemistry Laboratory, Sahlgrenska University Hospital), according to ISO/IEC 15189 Standard for Medical Laboratories.

Infection assessment

CRP and erythrocyte sedimentation rate were analysed in order to avoid systematic error introduced by infections. Before being served the drinks, each subject was asked about the present health status and any indications of infection during the weeks before drinking the radio-iron-labelled fruit drinks. The same question was also asked in connection with the blood sampling.

Statistics

The primary hypothesis was that there would be a significant increase in iron absorption after drinking a fruit drink containing Lp299v. The sample size and power calculation was based on the fact that two different iron isotopes were used in a cross-over trial. The unpaired two-sample Student t test was used to analyse iron absorption differences between Lp299v-containing fruit drinks in Trials 1 and 2, as well as between control drinks in Trials 1 and 2. The paired sample Student t test was used to analyse differences between control drink and control in the same trial. The unpaired two-sample Student’s t test was used to analyse differences between Lp299v-containing fruit drinks in Trials 1 and 2, as well as between control drinks in Trials 1 and 2. As a sensitivity analysis, the non-parametric counterparts (Wilcoxon signed rank sum test and Mann–Whitney test) were also conducted, but it did not change the outcome. All P-values are two-tailed and considered to be statistically significant if $P < 0.05$. Statistical analyses were performed using IBM® SPSS® statistics for Windows 22.0.0.0 (IBM Corp.).

Results

The presented iron absorption values were normalised to a 40% reference dose absorption, and thereby corrected for variation in iron absorption capacity that mainly results from differences in iron status. Of the twenty-two subjects, one subject did not complete the study so that the data analysis was based on a total of twenty-one women with an age range of 20–40 years (mean age = 24.3 years) and a mean BMI of 21.2 (SD 2.1) kg/m² (Table 2). The iron absorption values (Fig. 2) in both trials were distributed according to the Gaussian curve.

Trial 1

The results of Trial 1 involved ten subjects. Mean iron absorption from the drink containing 10^9 CFU Lp299v was 28.6 (SD 12.5)%, which was significantly higher than the iron absorption from the control drink, 18.5 (SD 5.8) % ($P < 0.028$).

Trial 2

The results of Trial 2 involved eleven subjects. Mean iron absorption from the drink containing 10^{10} CFU Lp299v was 29.1 (SD 17.0) % compared with 20.1 (SD 6.4) % from the control drink. However, this difference was not statistically significant ($P < 0.080$).

Analysis of the iron absorption from the two drinks containing Lp299v in Trials 1 and 2 showed that they did not differ significantly ($P < 0.941$), nor did the iron absorption from the two control drinks in Trials 1 and 2 differ ($P < 0.557$). Combining the two studies by pooling the absorption values for all twenty-one subjects gave a mean iron absorption of 27.8 (SD 14.7) % with added Lp299v, which was significantly higher than the control drink iron absorption (19.3 (SD 6.0) %, n 21, $P < 0.004$).

Discussion

In this study, the absorption of non-haem iron from a fruit drink containing Lp299v was almost 50% higher compared with a

Table 2. Study subject data at baseline (Mean values and standard deviations)

<table>
<thead>
<tr>
<th></th>
<th>Trial 1 (10^9 CFU Lp299v, n = 10)</th>
<th>Trial 2 (10^{10} CFU Lp299v, n = 11)</th>
<th>Total (n = 21)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>BMI (kg/m²)</td>
<td>21.3 ± 2.0 (Mean ± SD)</td>
<td>21.2 ± 2.3 (Mean ± SD)</td>
<td>21.2 ± 2.1 (Mean ± SD)</td>
<td>NS</td>
</tr>
<tr>
<td>S-Ferritin (μg/l)</td>
<td>33 ± 13 (Mean ± SD)</td>
<td>33 ± 14 (Mean ± SD)</td>
<td>33 ± 13 (Mean ± SD)</td>
<td>NS</td>
</tr>
<tr>
<td>Hb (g/l)</td>
<td>138 ± 8 (Mean ± SD)</td>
<td>135 ± 9 (Mean ± SD)</td>
<td>136 ± 9 (Mean ± SD)</td>
<td>NS</td>
</tr>
<tr>
<td>S-Fe (μmol/l)</td>
<td>15 ± 6 (Mean ± SD)</td>
<td>18 ± 7 (Mean ± SD)</td>
<td>17 ± 7 (Mean ± SD)</td>
<td>NS</td>
</tr>
<tr>
<td>TSAT (%)</td>
<td>23 ± 10 (Mean ± SD)</td>
<td>20 ± 9 (Mean ± SD)</td>
<td>23 ± 9 (Mean ± SD)</td>
<td>NS</td>
</tr>
<tr>
<td>TIBC (μmol/l)</td>
<td>68 ± 7 (Mean ± SD)</td>
<td>76 ± 10 (Mean ± SD)</td>
<td>76 ± 9 (Mean ± SD)</td>
<td>NS</td>
</tr>
<tr>
<td>CRP (mg/l)</td>
<td><5 (Mean ± SD)</td>
<td><5 (Mean ± SD)</td>
<td><5 (Mean ± SD)</td>
<td>NS</td>
</tr>
<tr>
<td>ESR (mm)</td>
<td>9 ± 5 (Mean ± SD)</td>
<td>7 ± 3 (Mean ± SD)</td>
<td>8 ± 4 (Mean ± SD)</td>
<td>NS</td>
</tr>
</tbody>
</table>

CFU, colony-forming units; Lp299v, Lactobacillus plantarum 299v; S-Fe, serum iron concentration; TSAT, transferrin saturation; TIBC, total iron-binding capacity; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate.

* P values represent differences between Trials 1 and 2. Values are considered to be statistically significant if $P < 0.05$.

1198 M. Hoppe et al.
Iron absorption from a fruit drink with and without Lactobacillus plantarum 299v (Lp299v). The bars and the whiskers represent means and standard deviations for non-haem iron absorption. The iron absorption values are normalised to 40 % absorption of the reference dose. The iron absorption values were calculated from Bering et al. (17), where the study product (an oat gruel) had a low iron bioavailability, and the lactobacilli fruit drink in Trial 2 contained 10^{10} CFU Lp299v (n 11). A paired sample Student’s t test was used to analyse iron absorption differences between Lp299v-containing fruit drink and control in the same trial.

Fig. 2. Iron absorption from a fruit drink with and without Lactobacillus plantarum 299v (Lp299v). The bars and the whiskers represent means and standard deviations for non-haem iron absorption. The iron absorption values are normalised to 40 % absorption of the reference dose. The lactobacilli fruit drink in Trial 1 contained 10^9 colony-forming units (CFU) Lp299v (n 10) and the lactobacilli fruit drink in Trial 2 contained 10^{10} CFU Lp299v (n 11). A paired sample Student’s t test was used to analyse iron absorption differences between Lp299v-containing fruit drink and control in the same trial.

similar fruit drink without Lp299v. The iron absorption from the control drink was 19 % (pooled value for Trials 1 and 2, n 21), and thus the drink can be considered to be a high iron bioavailability meal(34). The high iron bioavailability was probably because the drinks contained 100 mg of ascorbic acid (AA). The molar ratio of AA to iron in the control drink was about 6:1, and an enhancing effect on iron absorption has been proposed at molar ratios of at least 2:1 to 5:1 (depending on the amount inhibiting factors)31,32. Nevertheless, when Lp299v was added to this drink with an already relatively high absorption level, there was a significant increase in iron absorption. In a study by Bering et al(17), where the study product (an oat gruel) had a low iron bioavailability, adding Lp299v resulted in an approximately 100 % increase in iron absorption in comparison with the present study with a high bioavailability meal in which the relative increase was 50 %. Hallberg et al(33) similarly observed a proportionally greater influence of AA on low iron bioavailability meals.

In the present study, iron absorption from the fruit drink containing 10^9 CFU Lp299v did not differ from the fruit drink with 10^{10} CFU Lp299v. Consequently, the iron-enhancing effect did not seem to be augmented when the Lp299v concentration was increased from 10^9 to 10^{10} CFU. The drink with a higher content of Lp299v contained somewhat more organic acids, and this could theoretically have a positive effect on the iron absorption(17,34,35). However, it is unclear to what extent organic acids such as lactate and acetate promote iron absorption (Nordic Nutrition Recommendations 2012), and the differences between the Lp299v drinks were small (2 mmol and approximately 0–4 mmol, respectively).

Even if the fruit drink with the highest dose of Lp299v contained more organic acids, no statistical significant difference in iron absorption was detected between the control drink and the Lp299v drink (P<0.080). However, it cannot be ruled out that the lack of significant difference could be because of the sample size being too small.

Previous studies on iron absorption and iron status have also suggested positive effects from lactobacilli. In an Indian population, the consumption of Bifidobacterium lactis HN019 and prebiotic fortified milk for 1 year resulted in a smaller number of iron-deficient preschoolers and increased weight gain(50).

It is well known that probiotics can contribute to, and modulate, health and disease(37), but little is known about a possible iron absorption-enhancing mechanism(s). Some Lactobacillus strains have inherent phytases and can degrade PA during fermentation, thereby making the bound iron available for absorption(50). However, Lp299v has low phytase activity, and the amount of PA is not lowered during fermentation of PA-rich oat gruel in comparison with non-fermented oat gruel(57). The content of PA was also rather low in the fruit drinks used in this study; all drinks contained the same amount of PA and the PA:Fe molar ratio was very low (0·05–0·06). Furthermore, even if all of the PA was degraded in the intestine, only a small amount of iron should be released (0·3 mg). This is calculated from Bering et al(17) assuming that all of the iron in the oat gruel meal was bound to PA.

Bering et al(17) studied the effect of pH and organic acids on the absorption of iron in the presence of Lp299v in human trials involving women of reproductive age. In this study, Lp299v-fermented oat gruel was compared with three control products: heat-treated Lp299v-fermented oat gruel, non-fermented oat gruel with the same pH as the fermented oat gruels and non-fermented oat gruel with organic acids (similar amount as in the fermented gruels). The iron absorption from the Lp299v-fermented oat gruel was significantly higher compared with all the other control products. This led the authors to conclude that the positive effect on iron absorption was a result of the live Lp299v, and not the fermentation per se, pH or by adding organic acids.

The improvement in iron absorption may be related to the colonisation of Lp299v in the intestine. A mannose adhesion-encoding gene in L. plantarum has been identified(59), and it has been shown that Lp299v can adhere to the intestinal epithelium via a mannose-binding mechanism(40). Tallon et al(41) showed that Lp299v can also adhere to mucin that covers the epithelium in the intestine, and in vitro trials indicate that Lp299v increases the mucin excretion(42). Mucin may be involved in iron absorption. Conrad et al(43) showed that mucus can bind iron and that these mucin-iron complexes prevent precipitation of the iron. Divalent metal transporter 1, which can transport Fe2+ into the cells, is concentrated in mucin vesicles near the luminal surface, strengthening the role of mucin in iron uptake(44).
Another possible mechanism underlying the observed results could be an increase in colonic iron absorption due to a decrease in colonic pH, thereby reducing ferric iron into highly absorbable ferrous iron as a result of lactobacilli growth. In a cell-line study by Bergqvist et al., lactic acid fermentation by Lactobacillus enhanced Caco-2 iron uptake from carrot juice. As soluble ferrous iron was increased about 16-fold by lactic acid fermentation, and about one-third of the ferrous iron remained soluble after in vitro digestion (about 4- to 5-fold higher than in fresh juice), the authors concluded that enhanced iron uptake was a result of the increased level of soluble ferrous iron. However, a study by Petry showed that although inulin administration decreased faecal pH and increased faecal Bifidobacterium it did not influence iron absorption. Furthermore, in the study by Bering et al., no absorption of non-haem iron in the distal part of the intestine (ileum, colon) was observed in healthy young women.

In the present study, as in every study, there are several potential sources of error, both random and systematic, which ought to be minimised. In iron absorption studies, random sources of error are present in everything from preparation of isotopic solutions and meals to the very handling of the blood samples. This has previously been discussed thoroughly. The main limitations of the present study could, as discussed earlier regarding the trial with the high dose of Lp299v, include the small sample size. In addition, iron absorption capacity for women can differ according to the menstrual cycle phase. As all subjects in the present study were women, the optimal approach would differ according to the menstrual cycle phase. As all subjects in the present study were women, the optimal approach would differ according to the menstrual cycle phase. As all subjects in the present study were women, the optimal approach would differ according to the menstrual cycle phase. As all subjects in the present study were women, the optimal approach would differ according to the menstrual cycle phase. As all subjects in the present study were women, the optimal approach would differ according to the menstrual cycle phase. As all subjects in the present study were women, the optimal approach would...
References

